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Abstract—Runs of a benchmark or a suite of benchmarks are
inadequate to either characterize a given machine or to predict
the running time of some benchmark not included in the suite.
Furthermore, the observed results are quite sensitive to the na-
ture of the benchmarks, and the relative performance of two
machines can vary greatly depending on the benchmarks used.
In this paper, we report on a new approach to benchmarking
and machine characterization. The idea is to create and use a
machine characterizer, which measures the performance of a
given system in terms of a Fortran abstract machine. Fortran
is used because of its relative simplicity and its wide use for
scientific computation. The analyzer yields a set of parameters
which characterize the system and spotlight its strong and weak
points; each parameter provides the execution time for some
primitive operation in Fortran.

We present measurements for a large number of machines
ranging from small workstations to supercomputers. We then
combine these measurements into groups of parameters which
relate to specific aspects of the machine implementation, and
use these groups to provide overall machine characterizations.
We also define the concept of pershapes, which represent the
level of performance of a machine for different types of compu-
tation. We introduce a metric based on pershapes that provides
a quantitative way of measuring how similar two machines are in
terms of their performance distributions. This metric is related
to the extent to which pairs of machines have varying relative
performance levels depending on which benchmark is used.

Index Terms— Abstract high-level language machine, bench-
marking, execution time prediction, machine characterization,
performance distance between machines, performance shapes,
program statistics.

{. INTRODUCTION

NE approach to comparing the CPU performance of dif-
ferent machines is to run a set of benchmarks on each.
Benchmarking has the advantage that since real programs are
being run on real machines, the results are valid, at least for
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that set of benchmarks; such results are much more believable
than estimates produced from models of the system, no matter
how detailed. To the extent that the benchmark set is repre-
sentative of some target workload, the observed performance
differences will reflect differences in practice.

Considerable effort has been expended to develop bench-
mark suites that are considered to reflect real workloads.
Among them are the Livermore Loops [28], the NAS ker-
nels [1], [2], and synthetic benchmarks (e.g., Dhrystone [40],
[41], Whetstone [12]). Unfortunately, there are a number of
shortcomings to benchmarking [15], [42]. 1) It is very diffi-
cult to explain the benchmark results from the characteristics
of the machines. 2) It is not clear how to combine individ-
ual measurements to obtain a meaningful evaluation of the
various systems. 3) Given that there is almost never a good
model of the machines being benchmarked, it is not possible
to validate the results, nor to make predictions and/or extrap-
olations about expected performance for other programs. 4)
Unless the benchmarks are tuned for each machine architec-
ture, they may not take advantage of important architectural
features. 5) The large variability in the performance of highly
optimized computers is difficult to characterize with bench-
marks. For example, using benchmarks, Harms ef a/. found
that the relative performance between the Fujitsu VP-200 and
the CRAY X-MP/22 varied from 0.41 to 5.39 on individual
programs [20]; the ratio for the whole workload was only
1.12.

In this research, we present a new approach to characteriz-
ing machine performance. We do this via ‘‘narrow spectrum”’
benchmarking, by which we measure the performance of a
machine on a large number of very specific operations, in our
case, primitive operations in Fortran. This set of measure-
ments characterizes each specific CPU. We separately ana-
lyze specific programs, ignoring at this stage of our research
compiler optimizations and vector instructions. We can then
combine the frequency of the primitive operations with their
running times on various machines to predict the running time
of any analyzed program on any analyzed machine. This ap-
proach also gives us considerable insight into both the ma-
chines and the programs, since the effects of individual pa-
rameters are immediately evident.

This paper provides an overview of this approach to per-
formance evaluation, but concentrates on the specific issue
of machine characterization; prediction of the execution time
of benchmarks is done in [34] and [36]. Section II gives a
somewhat more detailed overview of our research. In Section
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III, we describe the program analyzer and also the execu-
tion predictor. The parameters used to characterize a machine
are explained in Section IV. The methodology used to make
measurements is presented in Section V, and the parameters
derived from a number of machines are given in Section VI. A
comparison of machines is also provided in that section. The
concepts of performance distributions (pershapes) and per-
shape distances between machines are given in Section VII.
Some unresolved issues are considered in Section VIII.

II. SYSTEM CHARACTERIZATION AND PERFORMANCE
EvaLuaTion

The idea behind our approach is to distinguish between two
different activities often ignored in machine evaluation; these
are system characterization and performance evaluation. We
define system characterization as an n-value vector where
each component represents the performance of a particular op-
eration (P;). This vector ((Py, Pz, --,Pp)) fully describes
the system at some level of abstraction. The parameters we
use are a set of primitive operations, as found in the Fortran
programming language, and are defined in Section IV. We
measure the values of the parameters using a system charac-
terizer, which runs a set of “software experiments,” which
detect, isolate, and measure the performance of each basic
operation. This approach is similar to studies which use a
low-level machine architecture based model [32], but we use
a higher level machine model.

The performance evaluation of a group of systems is the
measurement of some number of properties during the ex-
ecution of some workload. One property may be the total
execution time to complete some job. It is important to note
that the results depend, and are only valid, for the set of pro-
grams used in the evaluation, and are sensitive to not only the
machine, but also the compiler, the operating system, and the
libraries. In this research, we focus on the execution time of
computationally intensive programs as our metric for evaluat-
ing different architectures.

A. A Linear Model for Program Execution

Our research is based on the assumption that the execution
time of a program can be partitioned into independent time
intervals, each corresponding to the execution of some oper-
ation of an abstract Fortran machine (AFM). The AFM is the
same for all machines, independent of the hardware; only the
times for the Fortran operations differ. As is shown in [34],
and to a lesser extent later in this paper, this assumption is
reasonably accurate.

A similar approach is often used at the machine instruc-
tion level to evaluate implementations of an instruction set
architecture and design the next one [27], [32]. In that case,
instruction execution time is modeled as a linear sum of op-
erations that take time (instruction execution times, pipeline
interlocks, and storage access delays) weighted by their fre-
quencies. Our time consuming operations are Fortran source
statements; the implementation of such operations will differ
between machines, and even when compilers or optimization
levels are changed.

Our model of the total execution time is the following.
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Let Pyy = (P, P,---,P,) be the set of parameters that
characterize the performance of machine M. Let C4 =
(C1, C,--+,Cy) be the normalized dynamic distribution of
operations in program A4, and let C,y,; denote the total number
of operations executed in program A. We obtain the expected
execution time of program A on machine M

n
TA,M = Ctotal ZCiPi = Cto(alCA N PM

i=1

ey
where

= 1.
i=1

In general, given machines M, M>,---, M,,, with charac-
terizations Ppy,, Pay,, -+, Pp,, and a workload W formed
by programs A;, A,,---,A4; with dynamic distributions
Ca,, Cq,,---,Cy4,, the expected execution time of machine
M on workload W is

!
Twm, = Z Crotal, Ca; - Pp,
=

@

where Cioa, is the total number of operations executed in
program A;. Ty s, provides a way to make a direct com-
parison between several machines with respect to workload
w.

Using this model it is possible not only to compare two
different machine architectures using any workload, but also
to explain their results in terms of the abstract parameters.
Let Pprq = (¢1, b2, -+, ¢n) be the normalized distribution
of the execution time for program A executed on machine M.
Define

¢ = CA,jPMk,-
" Cy Py

Vector ®pr,4 decomposes the total execution time in terms of
each parameter and makes it possible to identify which op-
erations are the most time consuming. We would expect that
different machines will have different distributions, even for
different implementation of the same architecture or/and dif-
ferent compilers. Once we have the machine characterizations,
it is possible to study the effect of changes in the normalized
dynamic distribution without writing real programs that cor-
respond to these distributions, and in this way detect which
parameters have a significant impact in the execution time for
some machines.

An advantage of this scheme is that the / - m
machine-program combinations only require that each ma-
chine be measured once to obtain its characterization, and
also that each program be analyzed once (/ + m). Moreover,
once the machine has been measured, its characterization can
be used at any time in the future for additional evaluations,
in contrast to benchmarking in which access to the machine
(same model, operating system, compiler, libraries) is needed
for each new set of benchmarks.
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B. Limits of the Linear Model

The only way in which the linear model can give acceptable
results is if the following conditions hold. 1) The experimental
measurements are representative of “‘typical” occurrences of
the parameters in real programs. 2) The errors caused by the
low resolution and the intrusiveness of the measuring tools
are small compared to the magnitude of the measurements.
3) Variability in the execution mean time caused by data de-
pendencies, external concurrent activity, and nonreproducible
conditions is small, and therefore does not significantly affect
the results. In some cases, the above conditions cannot be
satisfied, especially in highly pipelined machines where the
execution time when there is a register dependency conflict
is several times greater than the execution time without this
delay. An example of this is the CYBER 205, where an add
or multiply can take as little as 20 ns to execute, when the
pipeline is full, or as much as 100 ns in the worst case [21].
If we consider the following two statements

X9 =(X1+X2)x(X3 +X4))
+((X5 + X6) (X7 +X8))

X6 =((X1+X2)+X3+X4)+X5

we find that the execution of the first statement takes approx-
imately 360 ns, while the execution time of the second takes
400 ns. A simple linear model will estimate that the execu-
tion of the second statement will be less than that of the first
statement, unless the model contains information on how the
execution time is affected by data dependencies. Branching
and interrupts also prevent the pipeline from working at peak
speed. Although it is difficult to detect and measure how each
machine will execute different statements, it is always possible
to create new parameters that take into account data depen-
dencies and measure the extra penalty in the execution time.
In practice, the number of parameters cannot be expanded
indefinitely.

C. Fortran and Other Programming Languages

The model presented above can also be applied to other
general purpose languages. We chose Fortran instead of other
programming languages for the following reasons: 1) most
large-scale scientific computation, accounting for most of the
CPU time on supercomputers, is done in Fortran; 2) the num-
ber of language constructs in Fortran is small; and 3) the
execution time of most of the operations in Fortran does not
depend on the value of the arguments. It is therefore natural to
experiment first with a less complex programming language
and test whether it is possible to make acceptable predictions.
Most of the differences between Fortran and other general pur-
pose languages do not prevent building an abstract machine
model, although a model with a larger number of parameters
and better experiments would be required.

D. Compiler Optimization

Thus far, we have presented our linear model as if a given
source program were simply and directly translated into the
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corresponding machine code. In reality, compilers optimize
the code, even when the optimizer is nominally inactive (opti-
mization level 0). Including the effect of optimizations in our
analysis is a difficult problem and is currently under study;
we summarize some of the issues in this section.

The problem of evaluating the effects of compiler optimiz-
ers can be broken down into three subproblems: 1) the experi-
mental detection of which optimizations can be applied by the
optimizer, i.e., what can the compiler optimizer do; 2) the
measurement of the performance improvement that a particu-
lar optimization will produce in a program; 3) the measure-
ment of the possible optimizations present in the source code.
Each is briefly discussed below.

The first point is similar to machine characterization, but
instead of measuring the performance of some operation, we
are interested in detecting which optimizations can be applied
by the compiler and in which cases. This may appear as an
easy task, but unfortunately, in many compilers, optimizations
are implemented ad hoc, e.g., a given transformation may be
used for only one data type and not another, although the
transformation is type independent [25], [26]. Reference [5]
presents an attempt to detect optimizations in the domain of a
vectorizing compiler.

The second subproblem deals with the quantification of the
performance benefits of individual transformations. Several
studies have tried to measure the performance effect of some
algorithms for code improvement [11], [39], [10], [3], [22],
[33]. Most have been carried out in the process of engineer-
ing an optimizing compiler and performance evaluation has
not been its main driving force; [33] is an exception. In ad-
dition, some of the studies have used a set of small programs
with a very regular structure like matrix multiplication, FFT,
Baskett puzzle, etc., in which the execution time is signifi-
cantly reduced by applying one or two transformations. It is
necessary that we develop benchmarks to measure the effect
of individual optimizations in large and realistic applications
using several optimizing compilers.

The third problem refers to the amount of optimizable code
present in real applications. Detecting which optimizations are
done by optimizers and measuring their performance effects
is only part of the problem; we also need to know the extent to
which programs contain optimizable code. The measurement
of optimization opportunities in programs could potentially be
done by modifying an existing highly optimizing compiler.

Several problems arise when we deal with compiler optimiz-
ers and attempt to measure their performance effect. The first
is that most optimizations cannot be measured in isolation. It
is common that the opportunity to apply some optimization is
the result of a previous transformation, and in some cases the
first transformation may not necessarily improve the execu-
tion time of the programs. One example is in-line substitution
of leaf procedures. The benefits of this optimization (by elim-
inating the procedure call) are normally less than the benefits
of other optimizations that are exposed by in-line substitu-
tion. This is especially true in benchmarks like Linpack and
Dhrystone.

A second problem is machine-dependent optimizations.
Proposing a general framework for the evaluation of opti-
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Fig. 1. The process of characterization, analysis, and prediction.

mizers hampers our ability to evaluate machine-dependent
optimizations. Most of these optimizations do not have an
equivalent in other architectures, and it may be argued that
these transformations are not really optimizations of the source
code, but deal with the efficient use of the machine resources.
However, some attempt should be made to measure the effect
of machine-dependent optimizations and compare their effec-
tiveness against those that are machine independent.

Most of our current efforts are directed at point one above,
in an attempt to evaluate the effectiveness of various compilers
in optimizing code.

III. DESCRIPTION OF THE SYSTEM

In the last section, we showed what we need in order to
characterize machines using the linear model and how to use
this information to make predictions about the execution time
of programs. We have implemented 1) a system characterizer
and assembled a library of machine characterizations (Pps);
2) a program analyzer that generates the dynamic distribution
(C4) and the total number of operations (Ciua) of Fortran
programs; and 3) an execution predictor that takes Py, Cy4,
and Ciow and estimates the expected execution time of the ap-
plications. The complete process of characterization, analysis,
and prediction is shown in Fig. 1. In the next two subsections,
we give an overview of the program analyzer and the execu-
tion predictor. A more in-depth presentation of the system
characterizer follows.

A. Program Analyzer

The program analyzer (PA) decomposes Fortran programs
statically and dynamically in terms of the abstract parameters.
In addition, both models, the performance model associated
with machines and the execution model associated with the
applications, are identical. Thus, it is possible using the dy-
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namic distribution to compare different programs, putting the
emphasis not on their syntactic or semantic properties, but
in how they affect the performance of different systems. The
dynamic statistics are independent of the code generated by
each compiler, and they only depend on the source code and
the data used in the execution.

The PA is basically the front end of a Fortran compiler. It
takes as its input a Fortran program and after making a lexical
and syntactical analysis, it outputs an instrumented version
of the original program, from which we obtain the dynamic
statistics. In addition, the PA also gives the static statistics of
each parameter for each basic block.

B. Execution Predictor

The execution predictor (EP) combines the machine char-
acterization Pys with the dynamic statistics C4 to obtain esti-
mates of the expected execution time of programs, as indicated
in (1). The execution time is computed for each statement of
the program, and this makes it possible to compute estimates
for different parts of the program. In addition to the expected
execution time, the EP also reports the variance of the es-
timate and the expected execution time per parameter along
with its variance.

1) Accuracy of the Execution Predictor: The correct test
for any model is its ability to predict the behavior of the
system it is trying to model. Unfortunately, many performance
evaluation techniques, like benchmarking, completely ignore
prediction and thus can only be considered as observations of
the phenomena.

The use of our model for prediction is discussed in [34] and
in a forthcoming paper [36]; here we just present a small sam-
ple of our results. To test the predictive ability of our model,
we selected a suite of 9 programs ranging from small bench-
marks that execute for a couple of seconds on a Sun 3/50 to
large applications which required several hours of CPU time.
The set of machines selected went from small workstations
like the RT-PC to supercomputers like the CYBER 205 and
the CRAY X-MP/48. We predicted execution times for all the
program and system combinations and compared these to 91
measurements of real execution times. The results were very
encouraging: 62 percent of the predictions were correct within
10 percent, 86 percent were within 15 percent, and 97 per-
cent were within 20 percent of the correct running time. The
root mean squared error across machines varied between 8.2
and 13.9 percent, and the same metric across programs var-
ied from 4.5 to 15.9 percent. Table I shows the measured and
predicted running times for the VAX-11/780, and as may be
evident, they are quite close. The accuracy of our predictions
supports our confidence that an abstract model of a system
at the programming language level provides a good general
framework for uniform system comparison.

IV. THE FORTRAN ABSTRACT MACHINE

By using a common parametric model, we are able to com-
pare the performance of different architectures and make a
fair comparison between them with respect to their execution
of Fortran programs. An extremely important issue is that
of selecting which and how many parameters. Increasing the
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TABLE I
ExecuTioN ESTIMATEs AND AcTUAL RUNNING TIMES FOR THE
VAX-11/780. ReaL TiME AND PREDICTION IN SECONDS;
ERRORS IN PERCENTAGE

program prediction | real time | error

(sec) (sec) (%)
Alamos 17027 1581.7 +7.65
Baskett 16.17 14.85 +8.99
Erathostenes 2.642 2.766 | -10.99
Linpack 2215 220.1 | +3.38
Livermore 653.5 611.0 +6.96
Mandelbrot 3213 3342 -3.86
Shell 8.803 9.183 -4.14
Smith 10188 1087.5 -6.32
‘Whetstone 21.74 21.57 +0.79
average +0.26
root mean sq. 9.52

number of parameters yields increased accuracy, up until the
point where measurement errors and nonlinearities in the real
system (i.e., the linear model is not perfectly accurate) dom-
inate. We are also limited in our accuracy by the fact that we
do not analyze the code generated by the compiler, nor use
information that is not contained in the source code of the
program. In the next subsection, we present the set of param-
eters used in our model and give a brief description of what

they measure. A more extensive discussion can be found in
[34].

A. Parameters in the System Characterizer

Each parameter of the model can be classified in one of
the following broad categories: arithmetic and logical, pro-
cedure calls, array references, branching and iteration, and
intrinsic functions. We decided which parameters to include
in our model in an iterative manner. Initially we associated
parameters with obvious basic operations, and after a first
version of the system was running, new parameters were in-
corporated to distinguish between different uses and execution
times of the “‘same” abstract operation in the program. This
was mainly the result of detecting a significant error between
our predictions and real execution times. Thus, the number
of parameters has increased from 76 in [34] to 102 currently.
Although every basic operation in Fortran is characterized by
some parameter, we have made simplifications for operations
which were rarely executed in the benchmarks we used. It is
straightforward to include new parameters in the model, and
to write new experiments for the system characterizer. The
parameters are classified in 18 different groups according to
the semantics of the operation; Tables IT and III present the
parameters.

Fortran is a language for scientific and numeric applica-
tions. For this reason most of the parameters deal with arith-
metic, logical, or trigonometric functions. In addition to the
arithmetic operators, Fortran also provides six relational and
six logical operators. Tables II and III (groups 1-8) show the
56 arithmetic parameters grouped by data type (real, complex,
or integer), size (single or double precision) and storage class
(local or global), and the logical and conditional parameters
(groups 9-10). (Each arithmetic mnemonic is formed by ap-
pending the first letter of the operation with the first letter of
the data type (R, C, or I), plus a letter identifying the size of
the operands (S or D) and finally the first letter of the storage
class (L or G). Four major arithmetic operators are repre-
sented: addition (includes subtraction), multiplication, divi-
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TABLE I
THE SET OF PARAMETERS MEASURED BY THE SYSTEM
CHARACTERIZER (PART 1 OF 2). ARITHMETIC OPERATIONS
ARE CLASSIFIED TAKING INTO ACCOUNT THE TYPE,
WIDTH, AND STORAGE CLASS OF THEIR OPERANDS
P in the system rizer (part 1of 2)
| ___1 real operations (single, local) 5 real operations (single, global)
01 SRSL | store 29 SRSG | store
02 ARSL | addition 30 ARSG | addition
03 MRSL | multiplication 31 MRSG | multiplication
04DRSL | division 32DRSG | division
O5ERSL | exponential (x’) 33ERSG | exponential (x')
06 XRSL | exponential (X”) 34 XRSG | exponential (x7)
07 TRSL | memory transfer 35 TRSG | memory transfer
2 complex operations, local op 6 plex operations, global operands|
08 SCSL | store 365CSG | store
09 ACSL | addition 37 ACSG | addition
10 MCSL | multiplication 38 MCSG | multiplication
11 DCSL | division 39DCSG | division
12 ECSL exponential (X' ) 40 ECSG exponential (X')
13XCSL | exponential (X7 ) 41 XCSG | exponential (X')
14 TCSL me transfer 42 TCSG memory transfer

3 integer operations, local operands

7 integer operations, global operands

15 SISL store 43 SISG store

16 AISL addition 44 AISG additon

17 MISL multiplication 45 MISG multiplication

18 DISL division 46 DISG division

19 EISL exponential (72) 47 EISG exponential (/2)

20 XISL exponential (/) 48 XISG exponential (17 )

21 TISL memory transfer 49 TISG memory transfer
4 real operations (double, local) 8 real op i (double, global)

22 SRDL | store S50 SRDG | store

23 ARDL | addition 51 ARDG | addition

24 MRDL | multiplicatior: 52MRDG | multiplication

25DRDL | division 53DRDG | division

26 ERDL | exponential (x') 54 ERDG | exponcntial (X)

27 XRDL | cxponential (X7) 55XRDG | exponential (X7)

28 TRDL | memory transfer 56 TRDG | memory transfer

TABLE 111

THE SET OF PARAMETERS MEASURED BY THE SYSTEM
CHARACTERIZER (PART 2 OF 2). EACH STANDARD
INTRINSIC FUNCTION IN FORTRAN Is REPRESENTED

BY ONE PARAMETER. FOrR ExaMpLE, SINE AND COSINE

ARE CHARACTERIZED BY THE SAME PARAMETER SINX,

WHERE X CAN BE S, D, or C

P; in the system characterizer (part 2 of 2)
[_9 logical operations Gocal) 10 logical operations (global) |
57 ANDL | AND & OR 62 ANDG { AND & OR
58 CRSL compare, real, single 63 CRSG compare, real, single
59 CCSL | compare, complex 64 CCSG compare, real, double
60 CISL compare, integer, single 65 CISG compare, integer, single
61 CRDL | compare, real, double 66 CRDG | compare, real, double
11 function call and arguments 13 branching parameters
67 PROC | procedure call 69 GOTO | simple goto
68 AGRS | argument load 70 GCOM goto
12 references to array el 14 DO loop p
71 ARR1 array 1 dimension 75 LOIN loop initialization (step 1)
72 ARR2 array 2 dimensions 76 LOOV loop overhead (step 1)
73 ARR3 array 3 dimensions 77 LOIX loop initialization (step n)
74 IADD array index addition 78 LOOX | loop overhead (step n)
15 intrinsic fu (real) 16 intrinsic functi d
79LOGS | logarithm 87LOGD | logarithm
80EXPS | exponential 88 EXPD | exponential
81 SINS sine 89 SIND sine
82 TANS | tangent 90 TAND | tangent
83 SQRS square root 91 SQRD square root
84 ABSS absolute value 92 ABSD absolute value
85MODS | module 93 MODD | module
86 MAXS | max. and min. 94 MAXD | max. and min,
17 intrinsic functions (integer) 18 intrinsic functi plex)
95 ABSI absolute value 98 LOGC | logarithm
96 MODI | module 99 EXPC | exponential
97 MAXT | max. and min. 100 SINC sine
101 SQRC | square root
102 ABSC | absolute valuc

sion (quotient), and exponentiation. Addition between an ar-
ray index and a constant is treated as a special parameter (74
IADD); most compilers compute the result and eliminate the
addition. In the case of exponentiation and with a real base
we distinguish two cases: one when the exponent is real and
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the other when it is an integer. Different algorithms are used
to implement them. In the case of an integer base, there are
also two cases determined by the magnitude of the exponent:
one case for an exponent equal to two and the other when it is
greater than two. Given the small number of exponentiations
executed, these simplifications are sufficient.

All the arithmetic operations in the store (store to memory)
category (arithmetic parameters with first letter S) correspond
to the time it takes to store the result of an expression. In
Fortran, loading an operand is not an independent operation
and therefore the execution time for most loads is included
in the arithmetic parameter. The exception is for an assign-
ment statement which does not involve the execution of any
operation (memory to memory). The memory transfer param-
eter (first letter T) represents the execution time of transfer
between variables.

B. Additional Parameters

Procedures and functions are characterized by two param-
eters (group 11). One parameter measures the joint execution
of the prologue and epilogue of the call (PROC). A second
parameter measures the time it takes to load the address of
each argument (in Fortran arguments are passed by reference)
either into the registers, the static environment of the callee
subprogram, or into the execution stack; different architec-
tures use different protocols.

Although Fortran has three different types of GO TO state-
ments: unconditional, assigned, and computed, we only need
two parameters to cover all the cases (group 13). The only
distinction is between a direct jump (GOTO) and a computed
jump (GCOM). In the first case, the address is known by the
compiler and a direct jump is used, while on the second the
target depends on the value of an expression and it is computed
at run time.

For DO loops we can identify two sources of overhead: the
time to initialize the loop and the time to update the index
and compare it against the limit. In addition, some machines
implement loops with unit step differently from nonunit step
loops. In some cases, the loop is transformed to a loop with a
unit step, which sometimes increases the overhead of nonunit
loops. Four parameters (LOIN, LOOV, LOIX, LOOX) char-
acterize loops with unit and nonunit increment (group 14).

Although Fortran has three different types of IF statements,
neither of these have been found to need special parameters
for their characterization. The block IF and the logical IF
are decomposed in two parts: the evaluation of the predicate
(arithmetic-logical expression) and a direct branch. The arith-
metic IF is different only in the way it branches. We handle
the branching part as a computed GOTO (GCOM).

Array variables in expressions are treated as ordinary vari-
ables plus an additional overhead to compute the address of
the element. We have three parameters (ARR1, ARR2, and
ARR3) that characterize the dimension of an array reference
(group 12). The overhead for variables in four and five di-
mensions is computed in the execution predictor using a lin-
ear combination of the three basic parameters. We found that
most of the applications we examined had very few arrays
with more than three dimensions and no examples of more
than five. As we mentioned in Section IV-A, adding a constant
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to an index variable is considered different from an ordinary
integer add. The parameter IADD is used for this special case.
Intrinsic functions are represented by 24 parameters cor-
responding to the functions most used in scientific programs
(groups 15-18). Although the execution time of an intrinsic
function is normally a function of the arguments and not con-
stant, we have assumed that it is constant. This is because the
execution frequency of these functions is generally low, the ar-
guments unpredictable, and we have found that our assumption
of constant execution time is a good enough approximation.

C. Global Versus Local Variables

Most operators are characterized by several parameters, de-
pending on the operand types and sizes, and storage class
(common/local). Global variables in Fortran (COMMON) are
sometimes treated differently from local variables. In some
compilers, variables stored in COMMON:Ss are treated as com-
ponents of a structure using a base-descriptor for each COM-
MON block which points to the first element of the COM-
MON. An operand is loaded by first adding an offset to the
base-descriptor and then loading the operand. This way of
treating simple variables increases their load time.

V. MACHINE CHARACTERIZER

The machine characterizer (MC) consists of 102 *software
experiments” that measure the performance of each individ-
ual parameter needed to completely characterize a Fortran ma-
chine (see Tables II and 1II). The MC is written as a Fortran
program and runs from 200 s, on a machine with good clock
resolution, to 2000 s on machines with 1/60th second resolu-
tion. We have run the MC on many different machines ranging
from low-end workstations to supercomputers. Each experi-
ment tries to measure the execution time that each parameter
takes to execute in “typical”’ Fortran programs. This *“typi-
cal”’ execution time was obtained by looking at real programs
and also by modifying those experiments that were identified
as generating the biggest error in our predictions.

A. Experiment Structure

Timing a benchmark is very different from making a de-
tailed measurement of the parameters in the system charac-
terizer. For some benchmarks the system clock is enough for
timing purposes, and repetition of the measurements normally
yields an insignificant variance in the averaged results. On the
other hand, the measurement of the parameters in the system
characterizer is more difficult due to a number of factors:

o the short execution time of most operations (5 ns-10 ps)

o the resolution of the measuring tools (> 1 us)

o the difficulty of isolating the parameters using a program
written in Fortran

e the intrusiveness of the measuring tools

e variations in the hit ratio of the memory cache

e external events like interrupts, multiprogramming, and
I/O activity

e the need to obtain repeatable results and accuracy.
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LIMIT = LIMITO * SPEEDUP * (TMAX - TMIN) / 2.
DO 4K =1, REPEAT
1 COUNTER = |
TIMEO = SECOND ()
2 IF (COUNTER .GT. LIMIT) GO TO 3

body of the test

COUNTER = COUNTER + 1
GOTO2
3 TIME1 = SECOND ()
IF (TIME1 ~ TIMEO .GE. TMIN .AND. TIME] — TIMEO .LE. TMAX) GO TO 4
LIMIT = .5 « LIMIT * (TMAX -~ TMIN) / (TIMEI1 - TIMED)
GOTO1
4  SAMPLE(K) = (TIME! - TIMEO) / LIMIT
CALL STAT (REPEAT, SAMPLE, AVE, VAR)

Fig. 2. The basic structure of an experiment. The statement “IF(TIME] —
TIMEQ, - - - enforces the execution of each test for more than TMIN and
less than TMAX seconds. If the execution is outside this interval, a new
value of LIMIT is computed and the test is repeated.

Most of our primitive operations have execution times of
from ten to thousands of nanoseconds and are implemented
with a single or a small number of machine instructions. For
this reason, direct measurement is not possible, especially
since our tests should work for many different architectures.
Furthermore, the need to isolate an operation for measurement
normally requires robust tests to avoid optimizations! from the
compiler that would eliminate the operation from the test and
distort the results [6]). Different techniques must be used, in
particular avoiding the use of constants inside the test loops;
using IF and GO TO instructions instead of the DO LOOP
statements to control the execution of the test; and initializ-
ing variables in external procedures to avoid constant folding.
Separate compilation of variable initialization procedures is
used to make sure that the body of the test does not give
enough information to the compiler to eliminate the operation
being measured from inside the test loop.

B. Test Structure and Measurement

The measurement tools we have are the system clock and
the repeated execution of a sequence of statements. The res-
olution of the clock, the overhead of the timing routine, and
the overhead of the statements that control of measurements
are the sources of error that we can control or work around.
Variations in the hit ratio of the cache, interrupts, multipro-
gramming and I/O activity are more difficult to eliminate and
measure (see Section VIII).

We use three different methods to measure the execution
time of the parameters. The first is by direct measurement,
i.e., executing some operation for some number of times and
in different contexts. The second is with a composite measure-
ment. In this case, we execute a number of different operations
and subtract the execution time of the known parameters to
obtain the value of the one that is unknown. The third pos-
sibility is with an indirect measurement. Some parameters of
the model are “coupled;” it is not possible to execute one
without executing the other. The way to measure one of the
parameters is to run two or more tests with a different number
of operations; the solution of a set of linear equations gives
the correct result. Fig. 2 shows the basic structure of our tests.
This same structure is used in all the tests.

! Even when we compile without optimization, compilers try to apply some
standard optimization techniques, such as constant folding, short-circuiting of
logical expressions, and computing the address of an element in an array.
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The sequence of statements to measure corresponds to the
“body of the test.” These statements are executed for some
number of times (LIMIT) and the execution time is mea-
sured (function SECOND). This time is called an observa-
tion. TMIN and TMAX control the minimum and maximum
time that each observation should run (TMIN < TIME1 —
TIMEO < TMAX). The two statements before the GO TO
1 enforce this condition. The DO loop is used to get several
(REPEAT) observations to obtain a meaningful statistic. Be-
cause we do not know a priori how fast or slowly an operation
executes in an arbitrary machine, we extrapolate by using the
time it takes to run the test in the CRAY X-MP/48 and multi-
ply by their relative speeds. This is done using LIMITO, which
is the number of times the test runs in the CRAY X-MP/48,
and SPEEDUP that gives the relative speed of the machine.
The relative speed is computed by running a small test at the
beginning of the characterization.

C. Experimental Error and Confidence Intervals

There are many known sources for the variability of the
CPU time [13], [29] and consequently in our measurements.
Some of these factors are timer resolution of the clock, im-
proper allocation of the CPU for I/O interrupt handling, cycle
stealing, and changes in cache hit ratios due to interference
with concurrent tasks. Small errors in the measurements have
considerable impact in the predictions we make and we must
measure and compensate for them.

We will proceed to derive expressions for the variance and
the confidence intervals of the measurements. We know that
each sample measurement is equal to

le - Tjo = Nlimitj (Bj + IFoverhead) + Coverhead (3)

where T;, and Tj, correspond to TIME1 and TIMEO in Fig.
2; Niimir; (LIMIT) is the number of times the body of the
test (B;) is executed, Coverncad i the overhead of the timing
function, and I'F oyerhead represents the extra instructions that
control the test. Using (3) we can compute the time to execute
once the body of the test

Tj; - Tjo - Coverhead

B; =
J
Niimit;

—-IF overhead -

Now the mean time and variance for a sample of size Nrepear
is

N repeat

> B,
=1

1

B=
N repeat

1 Nrepeal
’B=——" Y (Bj—B)Y. (4
j=1

N repeat — 1

To obtain the mean value of parameter ﬁi we need to know
if the test is direct, composite, or indirect. Let N be the num-
ber of times parameter P; is executed inside the body of the
test, then the mean value and variance of parameter 13; in a
direct test are

2
B
02P1‘ :0}\,—2.

P = ®

2w
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In a composite test we have

p. _ B — Wexia UZB + UzWextra
T N N?
where Wy, is the additional work inside the body of the test

or in the second test. In an indirect test, P; is a function of
several measurements.

P; = f(B, B, -

UZP,' =

: ,Bn)-

The normalized 90 percent confidence intervals are given by
the expression

_togs
b,

1/2 0'2Pj

1/2
N repeat}

where tgg5 corresponds to the 95 percent percentile of the
student’s ¢ distribution. Looking at (3)-(6) we see that by
increasing N, Nijmir, and N repeat, We can reduce the variance
in our measurements.

O

a’P; ]

1095 [
N, repeat

ypi

D. The Effect of Njipmi, and N repear On the Variance

One question we have not answered is what should be the
magnitude of Ny and N, repeat {0 Obtain measurements which
give a small o /u ratio. These parameters are system depen-
dent and are mainly affected by the resolution of the clock, the
concurrent activity on the system, and the particular parameter
being measured. We ran several experiments using different
values for NV, repeat aNd Nijimi¢ in several machines. Fig. 3 shows
the normalized confidence interval of ten parameters for val-
ues of Nijimir such that the each test is run for at least 0.1,0.2,
0.5, 1.0, 2.0, and 4.0 s on a VAX-11/780. We also obtained
measurements for Nyepeq equal to 5, 10, and 20 observations.

We see that for a fixed value of N, repeat the width of the
confidence interval of our measurements decreases as the time
for the test increases, but for small values of N repeat» there is
a limit to how much we can decrease the confidence interval
by only increasing the time of the test (NV}imi). The reason
for this is that by increasing the length of the test we reduce
the variability due to short-term variations in the concurrent
activity of the system. However, the probability of a change in
the overall concurrent activity of the system increases with a
larger test. This change may produce a greater variance if the
size of the sample statistic is small. We see that the best results
are obtained for 20 observations and 1-2 s for the duration of
the test. In machines with good clock resolution, acceptable
results are obtained with 10 observations and 0.2 s for each
test.

At one point, we considered not using the mean value mea-
sured, as described above, but rather the minimum value,
since the minimum should reflect a measurement free of any
outside interference. This was found to yield significantly
worse predictions; the reason was that “real” runs of the pro-
grams in question also suffered the same interference as the
measurement program.

VI. MEASUREMENTS AND SOME RESULTS

We have run the system characterizer on the machines
shown in Table IV, among others. Of the 15 systems shown,
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four are supercomputers, each implementing single precision
floating point with 64 bits. On the other systems, single pre-
cision variables are allocated using 32 bits. We gathered two
sets of measurements for the Sun 3/260, one using the 68881
coprocessor to execute floating point arithmetic, and another
emulating the same functions in software. We also measured
the effect of using different Fortran compilers, the VMS FORT
compiler and the UNIX BSD {77, both running on the VAX-
117785, in both cases with Ultrix as the operating system. By
using the characterizer, we can quantify how much each pa-
rameter is affected by the addition of a new hardware feature
or by changing the compiler.

The measurements of all parameters are presented in the
Appendix in Tables IX-XIII. The parameters are grouped ac-
cording to Tables II and III, with all magnitudes in units of
nanoseconds. Entries with magnitude ‘< 17 represent param-
eters that were not detected by the characterizer. This happens
when the execution time of the parameter is so small that most
of its the execution overlapped with other operations; the total
execution time of the program does not depend significantly
on the occurrence of these parameters.

We can see some characteristics of the machines by look-
ing at the results. For example, it is clear from the tables that
the performance of the four supercomputers on the execution
of double precision arithmetic is significantly lower than that
for single precision. (Double precision on those machines,
however, is actually quadruple precision for the smaller ma-
chines.) Single precision arithmetic operations and intrinsic
functions take one order of magnitude less time to execute on
these machines than double precision. The greatest difference
occurs on the IBM 3090/200 with double precision division.
This operation takes almost 700 ns using 64-bit operands,
while the same operation with 128-bit operands takes around
75 500 ns. In contrast, the same operation takes less than 8000
ns in any of the three CRAYs.

By looking at the results of the Sun 4/260 and Sun 3/260 (f),
we can see the main differences between them. The greatest
performance gap is found in floating point (real and complex)
arithmetic, intrinsic functions, procedure calls, and parameter
passing. For integer arithmetic this difference is smaller.

It is also possible to compare our results to published in-
struction times. However, this is difficult given that our pa-
rameters may not map directly to a particular sequence of
instructions and that there are many factors affecting the ex-
ecution times of instructions. For example, on the 68020 the
effective address calculation can take from zero to 24 cycles
depending on the addressing mode and whether a prefetch
instruction or/and an operand read is needed [30], [31]. Nev-
ertheless, Table V shows timing estimates for four intrinsic
functions (single precision) and also for the sequence of in-
structions implementing a procedure call for the 68020. In-
cluded in the table are the measurements obtained with the
system characterizer. For the instrinsic functions we assumed
that the cycle time was 50 ns (20 MHz), and for procedure call
40 ns (25 MHz). These are the clock rates of the MC68881
and MC68020, respectively. We see that except for the log-
arithm function, our measurements are sufficiently close to
the timing estimates. The large difference for logarithm is
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90 percent confidence intervals (normalized)

90 percent confidence intervals (nomalized)
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GOTO GOTO
PROC PROC
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DRDL DRDL
ARSL ARSL
0.1sec  0.2sec 0.5 sec 1.0 sec 2.0 sec 4.0 sec 0.1sec  0.2sec 0.5 sec 1.0 sec 2.0 sec 4.0 sec
(@) (b)
90 percent confidence intervals (normalized) 90 percent confidence intervals (nomalized)
20 measurements in each test a confidence interval of length two
(one unit each side) represent the
MRSL de of the
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ARGD
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Fig. 3. Normalized confidence intervals for ten different parameters. In (a), (b), and (c) we show how the length of the test (Njimit)

and the number of observations (N epea) affect the confidence interval of the measurements, taken on a VAX-1 1/780.. For a fixed
number of observations, an increase in the execution time of ‘he test tends to reduce the length of the confidence interval. (d)
shows for three parameters all their confidence intervals plotted together. All confidence intervals are normalized with respect to
parameter P;.
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TABLE 1V
CHARACTERISTICS OF THE MACHINES. THE Size oF THE DaTA TyYPE IMPLEMENTATIONS ARE IN NUMBER OF BiTs.

Sun 3/260 (f) uses THE 68881 s A4 COPROCESSOR RUNNING AT 20 M

Hz, WaiLe THE CPU ExecuTes aT 25 MHz

For THE VAX-11/785 WE Usep Two FORTRAN CompiLers, THE VAX FORT 4.7 aND THE BerkeLey 77 1.1.

Characteristics of the machines
Machine Name/Location Operating Compiler Memory | Integer Real

System version single | single | double

CRAY Y-MP/832 reynolds.arc.nasa.gov UNICOS 4.0.8 CFT773.0 32 Mw 46 64 128

CRAY-2 navier.arc.nasa.gov UNICOS 4.0.6 CFT773.0 128 Mw 46 64 128

CRAY X-MP/48 NASA Ames COS 1.16 CFT 1.14 8 Mw 46 64 128

IBM 3090200 cmsa.berkeley.edu VM/CMS 1.4 FORTRAN v23 32MB 32 64 128

MIPS/1000 cassatt.berkeley.edu UMIPS-BSD 2.1 F77vi21 16 MB 32 32 64

Sun 4/260 rosemary .berkeley.edu SunOS r.4.0 F77 32 MB 32 32 64

VAX 8600 vangogh.berkeley.edu | UNIX 4.3 BSD F77v1.1 28 MB 32 32 64

VAX 3200 atlas.berkeley.edu Ultrix 2.3 F77v1.1 8§ MB 32 32 64

VAX-11/785 (fort) pioneer.arc.nasa gov Ultrix 3.0 Fortv4.7 16 MB 32 32 64

VAX-11/785 (£77) pioneer.arc.nasa.gov Ultrix 3.0 F77v1.1 16 MB 32 32 64

VAX-11/780 wilbur.arc.nasa.gov UNIX 4.3 BSD F17v2 4MB 32 32 64

Sun 37260 (f) picasso.arc.nasa.gov UNIX 4.2r3.2 F17vl 16 MB 32 32 64

Sun 3/260 picasso.arc.nasa.gov UNIX 4.2r3.2 F77v1 16 MB 32 32 64

Sun 3/50 baal.berkeley.edu UNIX 4.2r3.2 Fi7v1 4MB 32 32 64

IBM RT-PC/125 loki.berkeley.edu ACIS 4.3 F77v1 4MB 32 32 64
TABLE v either at the level of the parameters or by predicting the exe-

ExecutioN ESTIMATES VERSUS CHARACTERIZATION RESULTS . . £ £ . hei tric d

wmits ] LOGS | ExPs | S | TARS Toaos cution times of a set o programs using t .exr Rarame TiIC ay-
Timing Est. | cycles | 672 | 598 | 482 | 574 | 113 namic distributions. Predicting the execution time of a pro-
Messurement | e | 41799 | snods | aorog | 20 | 4420 gram is equivalent to reducing the set of basic measurements
Error 305% | 45% [ 7.0% | 97% | 139% to a single number (the execution time) with the dynamic dis-

easily explained by looking at the code generated by the com-
piler; several additional instructions are included to determine,
at execution time, whether to compute log(x) or log(x + 1).
Therefore, our measurement includes the extra work done.

The effect of different compilers can be seen in the re-
sults for the VAX-11/785. The FORT compiler produces code
that is significantly faster for complex arithmetic and intrin-
sic functions, especially single precision intrinsics. There are
some surprising results in the case of the exponential opera-
tor. While the F77 code is between 2 and 5 times faster using
a real base and an integer exponent, the FORT compiler is
more than 4 times faster in the case of a real base and a real
exponent. A similar situation occurs when the base is integer.

The fact that procedure calls are expensive operations on
the VAX architecture can be corroborated when we compare
the time it takes to execute this instruction on the VAX 8600
against either the MIPS/1000 or the Sun 4/260. A procedure
call is approximately six times slower on the VAX 8600. This
large gap is also found for the other VAX implementations
when we make the comparison against the Sun 3 or IBM
RT-PC. This agrees with previous studies done on the VAX-
11/780 that found that procedure calls take on the average
45.25 cycles to execute, while the average VAX instruction
takes only 10.6 cycles [7], [17]. On their workload, 14 percent
of the time was spent executing this type of instruction.?

A. A Reduced Representation of the Performance
Measurements

The measurements obtained with the system characterizer
make it possible to compare different machine architectures

2 On the more recent VAX 8800 series, procedure calls and returns take
only 27.8 cycles, while the average instruction requires 8.8 cycles. Even with
this improvement, the VAX 8800 spends 13.8 percent of the time executing
procedure calls. For some procedure intensive programs, this number can be
as high as 62 percent (8], [9].

tribution acting as a weighting function. These two types of
comparisons represent different extremes. On one side, we
have too much information with the raw measurements; it is
difficult to identify those parameters that most affect perfor-
mance without making reference to some particular workload.
On the other extreme, a single number representing the exe-
cuting time gives an illusion of precision by hiding the multi-
dimensional aspects of program execution.

Therefore, it is convenient to represent the parameters in
some “reduced” form, in which overall performance is rep-
resented using a small number of dimensions, each associated
with different aspects of the computation. In this way, it is
not only possible to compare the performance of a single op-
eration or the overall performance with respect to a given
workload, but also to focus on some particular mode of exe-
cution.

B. Combining Measurements and Selecting Weights

The two major issues when we reduce a large number of
parameters into a smaller set are how to group the basic mea-
surements, and how much weight to assign to each element.

For the first part we identified a small number of perfor-
mance “‘dimensions,” each representing either a hardware or
a software feature. These ‘‘dimensions” should be as inde-
pendent of each other as possible, and should reflect distinct
components of the machine. We use hardware, software, and
hybrid parameters. Integer addition is representative of the
first group, trigonometric functions of the second, and floating
point arithmetic, which in some machines is executed using
special hardware and on others by software routines, belongs
to the hybrid group.

The second issue, assigning weights to basic parameters,
is a more difficult task, given that the impact of a parameter
in the performance of a system is a function of the work-
load. However, this workload dependency is not as serious a
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TABLE VI
THEe 17 REDUCED PARAMETERS, SHOWING BASIC MEASUREMENTS
AND THEIR RESPECTIVE WEIGHTS. WITH THE EXCEPTION OF
MEeMorY BANDWIDTH, THE SUM OF WEIGHTS FOR EACH REDUCED
PARAMETER EQuaLs ONE. THE SuM oF MEMORY TRANSFER
WEIGHTS EqQuaLs 0.5, BECAUSE THE OPERATION INVOLVES
LoADING FROM MEMORY AND WRITING THE RESULTS

1 memory bandwidth (single) 2 memory bandwidth (double)
TRSL  .125 | TISL  .125 TCSL  .125 | TRDL  .125
TRSG _ .125 | TISG __ .125 TCSG __ .125 | TRDG _ .125

[ 3 integer iti I [ 6 floating point additi l
[AISL__ 500 [ AISG__ 500 | [ ARSL 500 | ARSG _ .500]

[ 4 integer multiplication ] [ 7 foating point multiplication |

[MISL 500 [ MISG__ 500 | [ MRSL 500 | MRSG _ .500]
5 integer arithmetic 8 floating point arithmetic
DISL 400 | DISG .400 DRSL .400 | DRSG 400
EISL 090 | EISG 090 ERSL 0% | ERSG 050
XISL .010 | XISG 010 XRSL .010 | XRSG .010
9 precision ari 10 double aril i

ACSL 325 | ACSG 325 ARDL 325 { ARDG 325
MCSL 125 | MCSG 125 MRDL 125 | MRDG .125
DCSL  .040 | DCSG  .040 DRDL .040 | DRDG  .040
ECSL 008 | ECSG 008 ERDL  .008 | ERDG .008
XCSL  .002 | XCSG  .002 XRDL  .002 | XRDG _ .002
11 intrinsic fu (single) 12 intrinsic functions (double) |
LOGS .166 | TANS 166 LOGC .100 | LOGD .100
EXPS .166 | SQRS 166 EXPC .100 | EXPD .100
SINS .166 | MODS  .166 SINC .100 | SIND 100
SQRC  .100 | SQRD  .100

TAND  .100 | MODD .100

13 logical operations 14 pip g
ANDL 250 { CISL 250 GOTO 900 [ GCOM 100
CRSL 250 | CDRL  .125 15 procedure calls
CCSL 125 CALL 750 [ ARGU 250
16 address P i 17 iteration

ARR1 .600 [ ARR3 100 LOIN 060 | LOIX 030
ARR2 300 LOOV  .605 | LOOX .305

problem as in the case of reducing all parameters to a sin-
gle number. The relative proportion of integer and floating
point operations varies greatly from one program to another,
but if we focus only on floating point, our experience is that
the relative distribution of these operations does not show the
same degree of variability. We selected the weights based on
extensive statistics of Fortran programs reported in the liter-
ature complemented with other statistics produced with our
program analyzer [24], [34], [40].

In Table VI, we present the set of parameters and weights
that form each of the 17 reduced parameters. Parameters char-
acterizing hardware functional units are: integer addition and
multiplication, logical operations, procedure calls, looping,
and memory bandwidth (single and double precision). Soft-
ware characteristics are represented by trigonometric functions
(single and double precision). Floating point, double precision
and complex arithmetic, pipelining, and address computation
belong to the hybrid class.

C. Reduced Measurements and Kiviat Graphs

Fig. 4 shows the values of the reduced parameters, dis-
played as a Kiviat graph, normalized in each case to the corre-
sponding reduced parameter for the VAX-11/780. Numerical
values for the reduced parameters (absolute and normalized)
appear in [35], but are omitted here due to lack of space. A
Kiviat graph forces the performance graph of the VAX-11/780
to be a circle. Each graph is logarithmic, with each circle rep-
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resenting a change of one order of magnitude with respect to
its nearest neighbor. The smallest circle corresponds to a per-
formance equal to one tenth of a VAX-11/780.

From the reduced results, we can identify several differ-
ences and similarities between the machines. The memory
bandwidth results indicate that the only machines that show
the same performance in single and double precision mem-
ory bandwidth are the CRAY Y-MP, the CRAY-2, and the
CRAY X-MP. Although the single precision memory band-
width in the IBM 3090 is faster than the CRAY Y-MP (34 ns
versus 45 ns), for double precision this situation is reversed
(63 ns versus 40 ns).> The memory bandwidth reported here
does not necessarily match the numbers given by the manu-
facturer. Our measurements characterize the execution time of
a memory transfer assignment in a Fortran program, and for
an arbitrary system this transfer is affected by the availability
of registers, data cache, write buffer, and other circuitry that
improves the data transfer between the CPU and memory.

We can see the effect of different compilers on the VAX-
11/785. The difference in performance between the code pro-
duced by the two compilers is less than 10 percent in the
cases of memory bandwidth with single precision, integer
arithmetic, and DO loops. The FORT compiler code is 30
percent faster for real multiplication, 90 percent for complex
arithmetic, 130 percent for real division and exponentials, and
more than 3 times faster in intrinsic functions. On the other
hand, the F77 compiler code is less than 15 percent faster for
integer division and address computation. For intensive float-
ing point programs, the code of the FORT compiler clearly
outperforms the F77 compiler.

The effect of the floating point coprocessor in the Sun 3/260
is also clear by looking at the results. Using the 68881 in-
creases the performances of intrinsic functions by a factor of
more than 13, and for floating point arithmetic by a factor
from2 to 5.

The CRAY Y-MP/832 has the fastest times for floating
point and complex arithmetic operations, function calls, array
references, branching, and single precision intrinsic functions.
In particular, access to array elements is almost 6 times faster
in the CRAY than in the IBM 3090/200 and 127 times faster
than in the VAX-11/780. The CRAY machines are highly op-
timized for those operations that are extensively used in scien-
tific programs. The IBM 3090 is the fastest machine for dou-
ble precision trigonometric functions, single precision mem-
ory bandwidth, and logical operations. The CRAY-2 shows
performance similar to the CRAY X-MP and Y-MP in inte-
ger arithmetic (except integer addition), complex arithmetic,
and procedure calls, but memory bandwidth shows a larger
difference in both single and double precision.

A comparison between the MIPS/1000 and the Sun-4 shows
better performance for the Sun-4 only in memory bandwidth
and address computation, and the difference in all cases is
less than 15 percent. The MIPS/1000 has an advantage of
more than 75 percent in integer multiplication and arithmetic,
floating point and complex arithmetic, and intrinsic functions.

3 The difference between the memory bandwidth measured for the CRAY

Y-MP/832 between single and double precision is a result of the measuring
tools and the small execution times.
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Fig. 4. Performance of the reduced parameters with respect to the VAX-11/780. The concentric circles represents 0.1, 1, 10, and
100 times faster. The closest a performance shape (pershape) is to a circle, the closest the machine is to a VAX-11/780 in terms
of how both machines distributed their performance along different computational modes.

Floating point performance on the IBM RT-PC and Sun-
3 (50 and 260) is slow compared to other machines and
although a coprocessor provides a significant improvement,
their performance does not match the performance of compa-
rable minicomputers. For example, the IBM 3090/200 is less
than 12 times faster than Sun 3/50 (15 MHz) in integer addi-
tion, but 60 times faster than the Sun 3/260 (25 MHz) with
68881 (20 MHz) in floating point addition. The Sun 3/260 is
between 4-6 times faster than the VAX-11/780 on procedure
calls and array references, but the VAX-11/780 outperforms
the Sun 3/260 on single precision floating point addition and
multiplication.

VII. SIMILAR PERFORMANCE DISTRIBUTIONS
(PERFORMANCE SHAPES)

Consider two machines My and MYy that are identical ex-
cept for the clock rates. These machines have the property

that for any benchmark A their performance ratio (the ex-
ecution time on one machine divided by the execution time
on the other machine) is always a constant; thus, only one
benchmark is sufficient to evaluate one against the other. For
two arbitrary machines, however, this performance ratio can
vary significantly for different benchmarks; it is possible to
obtain a wide variety of performance ratios by running a suffi-
cient set of benchmarks. Therefore, it is important to quantify
how different is the performance distribution of an arbitrary
pair of machines and in this way determine how large we can
expect the variability in the performance ratio to be when run-
ning a large sample of programs. This metric should group
machines according to their performance ‘“shapes” and not
by the magnitude of their performance parameters. A per-
Jormance shape (pershape) is the Kiviat graph representing
how performance is distributed along the different computa-
tional modes (reduced parameters). A pershape tells us not
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how large a parameter or set of parameters is with respect
to other machines but how different machines distribute their
performance. In the next subsection, we present a metric that
measures how similar are the absolute and normalized per-
shapes of two arbitrary machines.

A. A Metric for Performance Shapes

We would like a metric that captures the notion of similarity
explained in the previous paragraph. By looking at Fig. 4, we
clearly see that the pershape of the CRAY Y-MP/832 is very
different than the pershapes of the VAX-11/780 or the Sun
3/50. But if we compare the CRAY Y-MP to the CRAY X-
MP, or the VAX 8600 to the VAX 3200, we find that except
for their relative sizes, the graphs are very similar. It is this
informal notion of similarity that we try to capture with the
pershape distance.

First, there are several properties that we like our metric
to satisfy in addition to the obvious properties required for
distances. The pershape distance must be greater or equal to
zero, and the distance from any machine to itself must be zero.
It should satisfy the triangle inequality. It should be symmet-
ric; the distance from A to B must be equal to the distance
from B to A. One essential property for our metric is that
if the performance of one machine is increased or decreased
by the same quantity in all the dimensions, the new distance
does not change. By allowing two different pershapes vectors
to have distance zero, we make the pershape distance a semi-
metric* [18]. Every parameter should have the same weight
and any arbitrary permutation of the dimensions in both ma-
chines should not affect the distance. This means that our
metric should be a function only of the relative performance
of the machines and not of how we plot them. Making each
dimension equally important tends to make the distance work-
load independent. The last property that we require is that
if the performance in one dimension is changed in both ma-
chines by the same factor, their relative distance should not
be affected.

The following discussion will give the rationale for allow-
ing different pershapes vectors to have distance zero. It is
important to understand that we are not trying to measure the
difference in performance between two machines, but some-
thing completely different. We are interested in the variabil-
ity of their expected performance. How fast one machine is
compared to the other is always a function of the workload
we use to evaluate them. What the pershape distance tries to
measure is how large is the spectrum of possible comparative
performance results when we use any possible workload com-
position. Therefore, given that two machines have a distance
d, if in one machine we increase the performance of every
dimension by the same factor (A), the distance should not
be affected. Obviously, the machine will be faster or slower
depending on whether \ is greater or less than 1, but the dis-
tribution of its performance remains the same. Therefore, its
distance to any possible machine should not change. A similar
situation happens when we add a constant to a random vari-
able; the mean is affected, but the variance does not change.

4 In some textbooks, this is called a pseudometric [23], [4]. We will not
use the prefix “semi” or “pseudo’ and simply refer to it as a metric.
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Formally, let X = (x;,Xx2,-,X,) and Y =
(1, Y2, ,¥n) be two performance vectors in (0, co)" rep-
resenting the pershapes of machines M x and My . The metric
2172
1 <« X; 1< X;
ax,v)=|—3" | —) s (_,)
®)
satisfies the following set of axioms:
DdX,Y)>0
i)dX,Y)=0 iff X =AY and A >0
i) dX,Y)=d{¥,X)
iv)d(X,Y)<d(X,Z)+dZ,Y)
WdX,,Y,) =dX,Y) for any permutation o
vi) d((Axy, X2, -, Xn)s A1, 2,00, 00) =dX, Y).

Note that (8) is not the only possible distance satisfying the
axioms; there are an infinity of different distance metrics with
the same basic properties. The only metric property which
provides any difficulty to verify is the triangle inequality. To
verify axiom iv) we first rewrite (8) as follows:

n

2

1
dX,Y) = —_—
— n— 1)1/2

1 n
log(xi) — — _ log(x))
j=1

12

172 lo g(yl) - Z log(yl (9)

T n-D'2 1)

then consider the mapping ¢: (0, cc)” — R”" defined by

o(xi) = log(x;) —

1 n
—_S_ log(x ;)
n 4

Jj=1

Now, if we replace ¢(X) and ¢(Y) in (9)

_
(n _ 1)1/2

n 1/2
dX,Y) = [Z (@Cxi) — qs(y;))l} 10
i=1

we obtain the Euclidean metric for R"”, and the verifi-
cation of the triangle inequality follows directly from the
Cauchy-Schwarz inequality [18].

In our presentation of the pershape distance, we did not
specify whether vectors X and Y represent absolute or nor-
malized pershapes. Computing a function on a normalized set
of values does not always preserve some elementary proper-
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TABLE VII
PAIRS OF MACHINES WITH SMALLEST AND LARGEST PERSHAPE DISTANCE

Most Similar Machines Least Similar Machi
machine machine distance machine machine distance

001 | VAX 8600 VAX 3200 0.187 105 || CRAY-2 Sun 31260 1753

002 || VAX 8600 VAX-11/785(f17) | 0214 104 || CRAYX-MP/48 | Sun3/260 1725

003 || VAX 3200 VAX-11/785 (f77) | 0235 103 || MIPS/1000 Sun 3260 1.661

004 || Sun3/50 Sun 3/260 0291 102 || CRAY X-MP/48 | Sun3/50 1.648

005 || vaX 3200 VAX-11/780 0425 101 || CRAY-2 Sun 3/50 1.647

006 || VAX-11/785 (€77) | VAX-11/785 (fort) | 0.432 100 || MIPS/1000 Sun 3/50 1591

007 || CRAY Y-MP/832 | CRAY X-MP/48 0454 099 || CRAY Y-MP832 | Sun3/260 1.562

008 || MIPS/1000 VAX-11/785 (fort) | 0.478 098 || VAX-11/785 (fort) | Sun 37260 1523

009 || MIPS/1000 Sun 41260 0493 097 || CRAY Y-MP/832 | Sun3/50 1.503

010 || VAX 8600 VAX-11/780 0498 096 || VAX-11/785 (fort) | Sun3/50 1445

o11 || vAX 3200 VAX-11/785 (fort) | 0.509 095 || IBM 30907200 Sun 31260 1.434

012 || VAX 8600 VAX-11/785 (fort) | 0.516 094 || BM 30907200 Sun 3/50 1421

013 || CRAY-2 CRAY X-MP/48 0518 093 || CRAY-2 5un3/260(f) | 1420

014 || VAX-11/785 (f77) | VAX-11/780 0519 092 || Sun 4/260 Sun 3/260 1345

015 || BMRT-PC/125 | Sun3/260 (f) 0522 091 || CRAY X-MP/48 | Sun3/260(f) | 1303

016 || CRAY Y-MP832 | CRAY-2 0532 090 || VAX-11/785(f77) | Sun3/260 1300

017 || CRAY Y-MP/832 | IBM 3090/200 0.661 089 || VAX 8600 Sun 3/260 1.296

018 || Sun4/260 VAX-11/785 (fort) | 0.663 088 || Sun 47260 Sun 3/50 1.286

019 || VAX-11/785 (fort) | IBM RT-PC/125 0.672 087 || CRAY-2 VAX-11/780 | 1264

020 || Sun 47260 IBM RT-PC/125 0.684 086 || VAX 8600 Sun 3/50 1.250
ties. The output of the function may change when we normal- VAX-11780  VAX-LU/T85 (€17) CRAYX-MPMS  CRAY-2
ize the inputs. It is important to see how our metric behaves
when we normalize the set of reduced parameters.

L.et X be an abs9lute per§h?p.e vector and Xz be a nor- a s60d o 3300 RAY Y 2
malized vector obtained by dividing each component x; of X
with the corresponding element in Z
VAX-11/78S (fort)
X1 X2 Xn
Xz=(—,—=,--",— ).
2 ’ 2 ’ ’ Zn 1BM 3090/200
. .. . IBMRT-PC/125 MIPS/1000
In linear algebra terms, normalizing vector X with respect to ——b d(xy) < 300
vector Z means applying a linear transformation 7 to vector > dy) <550
. . . . . <« d(xy) <.700

X, such that the transformation matrix associated with T is
diagonal. The matrix is zero everywhere except in the diago- Sun 37260 (9 Sun 41260 Sun 3/50 $——————> Sun 3260
nal, with 1/z; as the diagonal element i. Now the normalized Fjg 5. Al machines with performance distance less than 0.700 are joined

distance is given by

dTX,TY)=d(Xz,Yz) =d (<’z‘_‘,iz‘_'1> ,
1 n

<ﬂy—>> —d(X,Y).
21 Zn

If we substitute the normalized parameters in (8), we see that
the distance does not change. It is also easy to see that this
property is enforced by axioms v) and vi). Thus, we say that
distance d(X, Y) is isometric with respect to diagonal linear
transformations.

In addition to measuring the distance between two perfor-
mance vectors, the metric also gives information on which
parameters will most affect the benchmark results between
two machines. By ordering the terms inside of the first sum-
mation in (8), we find that the largest terms will be the ones
that will contribute more to the summation, and therefore to
the distance.

1) Similarity Results: Pershape distances were computed
for all pairs of machines to detect which were the most and
least similar machines. The most and least similar 20 are re-
ported in Table VII. The table shows that the most similar ma-
chines are the VAX 8600, VAX 3200, and the VAX-11/785,

by a double arrow. The pershape distance identifies clusters of machines
with similar performance distributions.

all using the F77 compiler. Other machines that are also close
to each other are the Sun 3/50 and the Sun 3/260, both run-
ning without the 68881. The differences between these two
machines are the clock, the cache, and the memory. The Sun
3/50 runs at 15 MHz, does not have a cache, and uses stan-
dard memory chips. The Sun 3/260 runs at 25 MHz, has 64
kbytes of virtual address write-back cache, and uses ECC for
memory.

It is possible to use the results in Table VII to identify
not only pairs of machines with similar pershapes, but also
clusters of machines. Fig. 5 illustrates one possible diagram
showing for all the machines a bidirectional arrow joining
the machines that have a distance less than 0.7. Different ar-
rows are used to show how close the machines are. In the
diagram, we see three connected components, one formed by
the supercomputers, another by the small workstations with-
out floating point coprocessors, and a large component mainly
formed by two groups having a common neighbor. The clos-
est of the two groups is formed by the machines implementing
the VAX architecture and using the F77 compiler. The other
group is formed by fast workstations. The VAX-11/785 using
the FORT compiler acts a bridge between the two groups.
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TABLE VIII
ExecuTioN RaTios BETWEEN PAIR OF MACHINE AND COMPARISON AGAINST THEIR PERFORMANCE DisTANCES. THE
CoLUMNS ON THE LEFT Stow THE ExecutioN TiMEes (IN SEconps). THe UpPER RiGHT CoLUMNs GIVE THE
Execution RaTios. THE MAXIMUM AND MINIMUM ENTRIES CORRESPOND TO THE RATIO OF LARGEST AND
SMALLEST EXECUTION RATIOS. MACHINES WITH A SMALL PERFORMANCE DISTANCE HAVE LESS VARIABILITY
IN THEIR RELATIVE SPEED AND THIS SHOULD CORRESPOND TO A SMALL MAX/MIN VALUE. WE GIVE

RESULTS FOR THE SUN 3/260 with Coprocissor ((f)I), anp witHout 1T (II).

Sun 3/260 IBMRT-PC | ‘Sun3/50 ratios
program 01 Tl I v na [ ma [va [ oy §oava | oavan
Alamos 15479s | 28389s 38819s 62732s || 1.83 | 2.51 | 405 137 | 221 1.62
Baskett 392s 3.88s 6.20s 706s || 099 | 1.58 | 1.80 | 1.60 1.82 1.14
Erathostenes 0.64s 0.64s 1.10s 090s {| 100 [ 172 | 159 [ 172 | 1.59 093
Linpack 1849s 3385s 4739s 763.7s || 1.83 | 2,56 | 4.13 140 | 226 161
Livermore 507.1s | 1103.1s 1610.1s 24570s || 208 | 3.18 | 4.85 146 | 223 1.53
Mandelbrot 41885 75.88s 10543 s 16394 |[ 1.81 | 252 § 392 | 139} 216 1.56
Shell 1.68s 1.72s 4.68s 314s | 102 | 279 | 1.87 | 2.72 1.83 0.67
Smith 338.3s 406.7 s 545.10s 9148s || 120 | 161 | 270 | 134 | 225 1.68
‘Whetstone 474s 1528s 12.05 s 34245 | 322 | 254 | 722 | 079 2.24 2.84
minimum 099 | 1.58 | 1.59 | 0.79 1.59 0.67
geom. mean || 1.55 | 227 | 3.18 146 | 205 1.40
maximum | 322 | 3.18 | 722 | 272 | 226 2.84
max/min 326 | 201 | 453 | 346 1.41 423
d(x.y) 096 | 052 | 093 | 123 | 029 113

B. An Application of Pershape Distances

By using (8), it is possible not only to compute the distance
between two machines but also to quantify which ‘“‘compos-
ite”” parameters contribute most to unbalance the overall per-
formance ratio between the two machines. In Table VIII, the
execution times of nine programs are given for four of the
machines. The table also includes the performance ratio be-
tween them, the maximum, minimum, and geometric mean of
their performance ratios, the maximum ratio of their relative
performance, and their pershape distance.

The programs used as benchmarks have different execu-
tion distributions and can be grouped in the following way:
Shell, Erathostenes, and Baskett are integer programs; Alamos
{191, [37], Linpack [14], [16], Livermore [28], and Mandel-
brot are floating point intensive programs; Whetstone [12] is
a floating point and intrinsic function program; and the Smith
benchmark [38] mixes floating point, integer, and logical op-
erations. Baskett also executes a large proportion of function
calls.

The results in the table show the relation between the per-
shape distance and the range of possible benchmark results
we can obtain when running a group of benchmarks. The
pershape distance between the Sun 3/260 (without 68881) and
the Sun 3/50 is only 0.29 and the interval of benchmark results
is just 1.41. The difference between the smallest ratio (1.59)
and the largest (2.25) is 41 percent. The same small distance
is found between the IBM RT-PC and the Sun 3/260 (which
uses a coprocessor). Machines with large distance pershapes
give a large variation in the benchmark results, but the relation
is not as clear as in the other cases. A possible explanation
is that our program sample is not large enough, and certain
types of operations that contribute to a large distance are not
present in a large enough proportion to skew the benchmark
results. The results do show that the Sun 3/50 can be 1.6 times
slower than the Sun 3/260 (with 68881) in a predominantly in-
teger benchmark, but 7.2 times slower in a benchmark with
a high number of intrinsic functions. This is consistent with
the performance ratios of the parameters representing integer
operations and intrinsic functions. By looking at the distances
between a group of machines, it is possible to identify which
characteristics of the benchmarks will give a more complete

evaluation of the systems. In contrast, programs that only ex-
ploit one or two characteristics will give skewed results.

VIII. WEAK POINTS IN THE CHARACTERIZER

The latest version of the characterizer incorporates several
additional parameters that were previously ignored. This has
increased the number of parameters from 76 to 102. Complex

. variables and a better characterization of intrinsic functions

form most of the new parameters. Even in this extended model
there are several factors that have not been characterized.

1) Locality and Cache Memory: Code that exhibits different
locality than our experiments affects the cache hit ratio and in
consequence the access time for data and/or instructions. Mea-
suring how the access time will be affected by different parts
of the program will probably not be possible using a machine
characterizer. By running some experiments with different de-
grees of locality we have found a variation of between four to
ten percent.

2) Branching: The size of the branch affects the execution
time by modifying the locus of execution. If the target of
the branch is to a nonresident page this may involve a page
fault and a context switch. A context switch normally involves
flushing the cache and this forces a *“‘cold” start on cache
references.

3) Hardware and/or Software Interlocks: In pipelined ma-
chines, the time to produce a new result depends on the context
in which the instruction is executed. This normally depends
(in addition to the effective execution time) on the functional
and data dependencies with respect to previously scheduled
instructions. As in the previous two factors, this is difficult to
measure from a high-level program.

4) Machine Idioms: Special cases of some instructions are
optimized to improve execution time. These idioms are used
by the compiler whenever possible. Without knowledge of
the architecture and the compiler, it is not possible to detect
which are the idioms of a given machine. For example, in
machines with autoincrement and autodecrement addressing
modes, these modes may be used in statements like i =7 +1.

5) “Random” Noise Produced by Concurrent Activity: Al-
though we address this problem in Section V-D, there is still a
problem left when we run in a loaded system. A small increase
in the load of the system tends to affect the measurements
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of some parameters, in particular array address computation,
branches, and loop overhead.

6) Optimization: In this study, we only considered unop-
timized code; the characterizer was compiled and run with
optimization disabled. Even when it is not difficult to detect
which transformations an optimizing compiler can apply, it
is not clear how we should modify the execution time model
to include optimized programs. Parsing the code and detect-
ing which optimizations are possible and deciding for these
which ones are going to be applied by a particular compiler
seems to require a ‘‘super-optimizer.” It is outside the scope
of this research to write such program; we are working on
other techniques to characterize optimization.

IX. CONCLUSIONS AND SUMMARY

In this paper, we have presented a model for machine char-
acterization based on a large number of high-level parameters
representing operations for an abstract Fortran machine. This
provides a uniform model in which machines with different
architectures can be compared. It is possible to detect dif-
ferences and similarities between machines with respect to
individual parameters. In addition, we have presented a set
of composite parameters that provides a more compact way
of representing the effect of hardware or software features in
the execution time of programs. Based on these composite
parameters we presented the concept of performance shape to
show how different machines distribute their possible perfor-
mance in different ways. We defined a metric to measure the
similarity between two pershapes and show how this distance
can be used to classify machines and the metric’s relation to
the variation in benchmark results.

Using the characterization results for the reduced parame-
ters, it is possible to make estimates for the execution time of
programs and in this way study the sensitivity of the execution
time with respect to variations in the workload; this last aspect
will be presented in a forthcoming paper [36]. We think that
our approach will advance the state of the art of performance
evaluation in several ways.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

1) A uniform ‘‘high-level” model of the performance of
computer systems allows us to make better comparisons be-
tween different architectures and identify their differences and
similarities when the systems execute a common workload.

2) Using the characterization to predict performance pro-
vides us with a mechanism to validate our assumptions on how
the execution time depends on individual components of the
system.

3) With a uniform model that can be used for all machines
sharing 2 common mode of computation, it is possible to de-
fine metrics that permit more extensive comparisons and in
this way obtain a better understanding of the behavior of each
system.

4) We can study the sensitivity of the system to changes
in the workload, and in this way detect imbalances in the
architectures.

5) The results obtained with the system characterizer give
insight into the implementation of the CPU architecture, and
the machine designers can use the results to improve future
implementations.

6) Application programmers and users can identify the most
time consuming parts of their programs and measure the im-
pact of new “‘improvements” on different systems.

7) For procurement purposes, this is a less expensive and
more flexible way of evaluating computer systems and new
architectural features. Although the best way to evaluate a
system is to run a real workload, a more extensive and in-
tensive evaluation can be made using system characterizers
to select a small number of computers for subsequent on-site
evaluation.

In the last 30 years, we have seen an explosion of new ideas
in many fields of computer science, but one problem that has
not received much attention is how to make a fair compari-
son between two different architectures. Given the impact that
computers have in all aspects of society we cannot afford to
continue characterizing the performance of such complex sys-
tems using MIPS, MFLOPS, or DHRYSTONES as our units
of measure.

APPENDIX

TABLE IX
CHARACTERIZATION RESULTS FOR GrOUPS 1-3. A VALUE 1< INDICATES THAT THE PARAMETER WAs NoT DETECTED
BY THE EXPERIMENT

Group 1: Floating Point Arith

ic Operations (single, local)

machine SRSL | ARSL | MRSL DRSL ERSL XRSL TRSL
CRAY Y-MP/832 13 46 111 210 660 4150 96
CRAY-2 39 70 101 250 8 4180 112
CRAY X-MP/432 82 76 154 357 91 5035 281
IBM 30907200 1< 82 140 684 129 4952 60
MIPS/1000 67 269 437 976 543 53018 499
Sun 4/260 104 755 788 2496 4724 60430 533
VAX 8600 72 425 575 1610 1097 217676 509
VAX 3200 262 805 999 2013 1847 361666 587
VAX-11/78S fort 263 1282 1524 3778 16305 82006 1799
VAX-11/785 £77 246 131 1924 4034 3740 648082 2065
VAX-11/780 1086 3215 6739 9322 11041 2066420 1598
Sun 3/260 (f) 1978 5543 8709 11394 15998 58901 1293
Sun 3/260 1< | 13580 19118 23003 31612 2205175 1286
Sun 3/50 1< | 26420 40246 46476 60818 4743815 3076
IBM RT-PC/125 3639 5684 10715 12304 12437 231989 6235
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TABLE IX (Continued)

Group 2: Floating Point Arithmetic Operations (complex, local)

machine SCSL | ACSL | MCSL DCSL ECSL XCSL TCSL
CRAY Y-MP/832 30 85 267 497 818 10466 147
CRAY-2 32 110 221 386 48 17167 199
CRAY X-MP/432 63 124 2n 51 1< 13168 319
IBM 30907200 26 215 679 3218 2940 13912 97
MIPS/1000 121 926 1727 12025 9004 721 1097
Sun 4/260 1< 8034 11808 29356 7561 130805 663
VAX 8600 275 1438 3523 39419 17876 326399 974
VAX 3200 792 287 6925 47240 30134 510817 1072

VAX-11/78S fort 531 2653 7542 53236 26842 314924 3514
VAX-11/785 £77 1074 4717 10206 88085 83278 966246 | 4703

VAX-11/780 1319 9679 38202 328270 | 170337 3584596 3796
Swun 3/260 (f) 436 | 27270 83719 353726 | 133222 446378 1382
Sun 3/260 1< | 31812 | 109547 604151 | 183495 5417755 1095
Sun 3/50 265 | 63460 | 231185 | 1233098 | 453373 | 11405138 8310
IBM RT-PC/125 471 | 26969 47498 194262 | 183060 678778 5101 J

Group 3: Integer Arithmetic Operations (single, local

machine SISL | AISL | MISL DISL EISL XISL TISL
CRAY Y-MP/832 1< 39 106 mn 1113 1131 82
CRAY-2 i< 61 62 3 126 131 114
CRAY X-MP/432 1< 9 414 T4 396 755 320
IBM 3090/200 1< 76 143 439 163 358 73
MIPS/1000 i< 227 945 2577 1111 2146 475
Sun 4/260 ’ 1< 286 1634 3918 5882 7979 219
VAX 8600 1< 357 628 1591 896 1883 462
VAX 3200 1< 490 895 2206 1273 2592 750
VAX-11/785 fort 1< 1002 1615 7292 1760 28928 2259
VAX-11/785 77 1< 1088 1789 7053 2309 5142 2182
VAX-11/780 1< 1327 6924 10502 9 15803 2186
Sun 37260 (f) i< 298 2212 4011 13979 17174 393
Sun 3/260 1< 237 2280 4119 14708 17398 251
Sun 3/50 1< 813 3898 7039 29262 36348 856
IBM RT-PC/125 1< 1497 3438 8837 4063 7581 2478

TABLE X

CHARACTERIZATION RESULTS FOR GROUPS 4-6. A VALUE 1< INDICATES THAT THE PARAMETER Was Not DETECTED
BY THE EXPERIMENT

Group 4: Floating Point Arithmetic Operations (double, local)

machine SRDL | ARDL | MRDL | DRDL ERDL XRDL TRDL
CRAY Y-MP/832 2 917 1626 5473 4804 108121 13
CRAY-2 1< 1974 2752 7355 2072 194054 1<
CRAY X-MP/432 69 1122 1812 6392 1073 138645 206
IBM 3090200 1< 424 964 75656 1493 48282 154
MIPS/1000 117 346 581 1556 838 49780 632
Sun 4/260 290 986 1228 4665 7046 133573 1058
VAX 8600 220 754 1725 5812 2841 208984 876
VAX 3200 276 1367 1896 4063 3256 353750 1178
VAX-11/785 fort 1047 2280 4243 7996 23386 177403 3920
VAX-11/785 17 929 2893 5460 8921 9517 636736 5637
VAX-11/780 1142 | 10589 24687 48235 33181 2044644 5483
Sun 37260 (f) 2159 5819 9272 11942 17793 112601 2610
Sun 3260 1172 | 23804 49458 73051 46323 2482220 1364
Sun 3/50 2068 | 54245 | 100594 132284 | 110522 5504681 6682

IBM RT-PC/125 5765 6889 8125 12611 14110 200954 4623

Group 5: Floating Point Arithmetic Operations (single, global)

machine SRSG | ARSG | MRSG DRSG ERSG XRSG TRSG
—_— e e —————}

CRAY Y-MP/832 13 46 111 210 660 4150 96
CRAY-2 95 124 216 392 72 3811 506
CRAY X-MP/432 90 73 152 354 83 5052 287
IBM 30907200 12 80 129 685 152 4901 (Y]
MIPS/1000 70 268 435 973 536 50784 364
Sun 4/260 145 718 855 2573 4739 60387 513
VAX 8600 254 483 598 1600 1040 215039 408
VAX 3200 400 878 1076 2159 1770 361567 554
VAX-11/785 fort 998 1244 1501 3619 16318 81494 1430
VAX-11/785 £17 219 1378 1928 4049 37127 651381 2070
VAX-11/780 1517 3304 6646 9539 10649 2056123 1164
Sun 3/260 (f) 1948 5616 8945 11662 16018 58321 1157
Sun 3/260 1< | 13433 18920 22865 31453 2139632 716
Sun 3/50 1< | 26943 40586 47035 58663 4671805 5092

IBM RT-PC/125 3156 5629 9684 12287 13054 230580 6636
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TABLE X (Continued)

Group 6: Floating Point Arithmetic Operati plex, global)

machine SCSG_| ACSG | MCSG DCSG ECSG XCSG TCSG
CRAY Y-MP/832 30 85 267 497 818 10466 147
CRAY-2 92 167 303 513 18 16738 512
CRAY X-MP/432 78 117 265 511 1< 13177 335
IBM 30907200 27 230 682 3162 2983 13965 102
MIP$/1000 121 927 1730 12049 8992 73007 1101
Sun 4/260 63 8027 12078 29703 7513 130146 664
VAX 8600 551 1544 3802 38787 17812 326228 1159
VAX 3200 519 2859 7334 46918 31358 511323 1599

VAX-11/785 fort 1055 3210 8827 52768 24348 298978 4393
VAX-11/785 £17 1144 4695 10039 87745 83649 962812 4680

VAX-11/780 1684 9778 35853 322237 | 168501 3679780 3297

Sun 3/260 (f) 1< | 27975 83103 352636 | 134477 453818 1519

Sun 3/260 3695 | 29210 | 107292 586288 | 191029 5307737 1<

Sun 3/50 2383 | 63526 | 231688 | 1233524 | 448297 | 11359785 8016

IBM RT-PC/125 555 | 26948 47435 197036 | 182374 693827 5216
TABLE XI

CHARACTERIZATION RESULTS FOR GROUPS 7-10. A VALUE 1< INDICATES THAT THE PARAMETER Was Not
DETECTED BY THE EXPERIMENT

Group 7: Integer Arithmetic Operations (single, global)

machine SISG AISG MISG DISG EISG X1SG TISG
—_—————

CRAY Y-MP/832 1< 39 106 27 1113 1131 82
CRAY-2 i< 161 89 485 144 153 607
CRAY X-MP/432 1< 93 405 716 405 751 327
IBM 3090/200 1< 79 151 439 170 393 82
MIPS/1000 1< 227 942 2580 1110 2143 476
Sun 4/260 1< 421 1728 4022 6022 7972 252
VAX 8600 1< 522 606 1593 990 2010 622
VAX 3200 i< 594 1028 2202 1484 2852 826
VAX-11/785 fort i< 1113 1888 7428 1857 29838 2269
VAX-11/785 f77 1< 1094 1788 7025 2279 5089 2167
VAX-11/780 1< 1616 7166 10731 8002 16036 2156
Sun 3/260 (f) 1< 438 2116 4015 14156 17771 427
Sun 3/260 i< 381 2121 4050 14212 16824 218
Sun 3/50 1< 937 3537 6887 29760 36609 738
IBM RT-PC/125 1< 1459 3422 8865 3956 7553 2438

Group 8: Floating Point Arithmetic Operations (double, global)

machine SRDG | ARDG | MRDG | DRDG | ERDG XRDG | TRDG
CRAY Y-MP/832 2 917 1626 5473 4804 108121 13
CRAY-2 1< 2051 2858 7360 2283 202494 302
CRAY X-MP/432 69 1122 1821 6342 1108 138935 222
IBM 3090/200 1< 421 963 73307 912 41150 154
MIPS/1000 108 349 587 1561 854 58483 679
Sun 4/260 278 961 1167 4586 7078 133796 1060
VAX 8600 252 796 1611 5905 2828 206974 817
VAX 3200 268 1515 2175 4238 3307 353997 1080
VAX-11/785 fort 1207 2202 4106 8044 23236 171685 3882
VAX-11/785 £77 968 2268 4498 7916 9192 636084 4461
VAX-117780 1274 10848 24648 47719 34214 | 2024890 4551
Sun 3/260 (f) 2354 5790 9275 11817 18065 112638 2477
Sun 3/260 549 | 23648 49458 72612 45612 | 2562978 2664
Sun 3/50 2436 | 54749 | 100942 | 133431 | 110630 | 5495105 4046

IBM RT-PC/125 3799 6017 10228 13526 14088 203231 7612

Group 9,10: Conditional and Logical Parameters

machine ANDL | CRSL | CCSL | CISL | CRDL || ANDG | CRSG | CCSG | CISG | CRDG
CRAY Y-MP/832 14 287 315 282 335 14 287 315 282 335
CRAY-2 36 95 237 96 1873 85 317 430 337 1963
CRAY X-MP/432 45 226 335 229 1243 46 228 322 231 1256
IBM 3090/200 104 94 106 EE] 214 111 138 17 161 259
MIPS/1000 185 4an 375 337 603 183 474 404 335 602
Sun 4/260 310 1217 3767 236 1566 455 1333 4168 655 1585
VAX 8600 304 653 680 464 867 321 868 91 743 1022
VAX 3200 389 1127 1295 767 1603 412 1207 1371 844 1602
VAX-11/785 fort 954 1378 1727 | 1033 2649 1013 1747 2348 | 1116 2264
VAX-11/785 £77 769 1937 1966 | 1467 2578 768 1909 1937 | 1477 2629
VAX-11/780 1091 2823 2768 | 1987 3914 1100 3057 3674 | 2481 4573
Sun 3/260 (f) 414 6814 | 16257 329 771 588 7093 15922 741 7057
Sun 3/260 394 5542 | 10938 332 | 10730 604 5728 | 11985 847 9765
Sun 3/50 803 | 13243 | 29047 559 | 22442 1399 | 14382 | 27969 | 1625 | 25800
IBM RT-PC/125 1005 | 16166 | 16033 | 2012 | 15919 1029 | 15430 | 15700 [ 2130 | 15993
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TABLE XII

CHARACTERIZATION RESULTS FOR Groups 11-15. A VALUE 1< INDICATES THAT THE PARAMETER Was NoT
DETECTED BY THE EXPERIMENT

Group 11,12: Function Call, Arg and Ref to Array El
machine PROC | ARGU || ARR1 | ARR2 | ARR3 | IADD
—

CRAY Y-MP/832 512 61 42 49 60 12
CRAY-2 574 40 122 159 200 1<
CRAY X-MP/432 583 3 59 104 148 2
IBM 3090/200 1162 70 128 410 746 17
MIPS/1000 797 139 523 1044 1592 1<
Sun 4/260 918 67 384 1004 1490 13
VAX 8600 4670 610 478 1223 2137 1<
VAX 3200 6991 957 668 1934 3316 1<
VAX-11/785 fort 11678 1515 1320 2897 5578 844
VAX-11/785 f77 16421 1526 995 2701 5057 32
VAX-11/780 19931 1783 2126 9592 | 18518 1<
Sun 3/260 (f) 5034 397 448 1661 2600 2
Sun 3/260 6548 594 990 3834 3484 1<
Sun 3/50 8838 1535 2042 6396 8759 100
IBM RT-PC/125 9395 991 2212 2406 4536 1<

Group 13,14: Branching and DO loop Parameters

machine GOTO | GCOM || LOIN | LOOV | LOIX | LOOX
CRAY Y-MP/832 1< 406 1015 315 627 368
CRAY-2 15 692 1263 353 264 513
CRAY X-MP/432 25 483 966 180 1307 293
IBM 30907200 38 460 660 130 952 353
MIPS/1000 137 1010 1938 417 1643 945
Sun 4/260 302 984 3378 1007 2320 1638
VAX 8600 262 1705 2540 396 6223 1070
VAX 3200 128 2117 3916 $75 5336 1634
VAX-11/78S fort 211 1691 {| 13042 972 | 11747 3124
VAX-11/785 £77 332 4262 8323 1621 7644 2768
VAX-11/780 588 4783 2525 2552 | 17363 4558
Sun 3/260 (f) 258 1742 2863 567 3256 1509
Sun 3/260 268 1694 1657 524 1957 1411
Sun 3/50 394 3001 6558 1976 5765 3776
IBM RT-PC/125 119 3395 || 11368 1236 5425 3396

Group 15: Intrinsic Functions (single precision)

machine EXPS LOGS SINS TANS SQRS | ABSS | MODS MAX_S__J
CRAY Y-MP/832 1453 1314 1423 1514 1038 1< 265 177
CRAY-2 1980 1855 2067 2136 266 25 383 328
CRAY X-MP/432 1826 1627 1846 1985 1356 1< 318 200
IBM 3090/200 2893 2887 2805 4119 2534 37 1094 435
MIPS/1000 6612 5680 5751 5156 6745 61 7215 1470
Sun 4/260 13560 14197 12081 20338 14520 450 23141 4758
VAX 8600 67798 52587 42683 70577 23883 1285 26471 3275
VAX 3200 109786 77167 63001 99637 32436 2108 38300 4563

VAX-11/785 fort 27212 28438 39474 70494 22634 215 42421 4101
VAX-11/785 77 204824 | 240223 109462 138871 56848 2996 88497 8302

VAX-11/780 690106 | 765999 468763 857151 | 177536 4230 | 186125 12234
Sun 3/260 (f) 43799 28548 25790 31478 12627 464 15571 15528
Sun 3/260 367032 | 443458 574151 686006 61509 1< 49869 18798
Sun 3/50 770610 | 950878 | 1272922 | 1512997 92447 4700 | 129932 47730

IBM RT-PC/125 27466 22327 23168 26511 7014 | 47189 | 179593 41101

TABLE XIII
CHARACTERIZATION RESULTS FOR GrOUPS 16-18. A VALUE 1< INDICATES THAT THE PARAMETER Was NoT
DETECTED BY THE EXPERIMENT

Group 16: Intrinsic Functions (double precision)

machine EXPD LOGD SIND TAND SQRD [ ABSD | MODD | MAXD
CRAY Y-MP/832 51052 58111 32289 71166 8689 28 9581 2200
CRAY-2 88428 94268 67440 146937 12100 431 19506 1021
CRAY X-MP/432 70511 64914 37931 83390 9751 21 9459 727
IBM 30907200 20471 21893 19390 28520 10193 70 76571 858
MIPS/1000 8565 7508 7997 7747 9330 39 6985 2385
Sun 4/260 22261 22220 21184 36096 27382 504 18995 6106
VAX 8600 67151 52267 41751 69792 23310 1755 24244 5083
VAX 3200 108029 79491 63237 101020 31103 3001 35793 nis

VAX-11/785 fort 51621 51081 97932 158473 30389 693 71349 7050
VAX-11/785 £77 203491 238536 107896 137069 55608 5906 84380 17867

VAX-11/780 701933 776686 467842 856357 | 179556 7504 | 176955 22079
Sun 3/260 (f) 46526 32093 28500 32619 13966 312 17058 19584
Sun 3/260 965293 | 1096555 | 1009146 | 1132512 94349 1< 60492 22428
Sun 3/50 2080362 | 2332882 | 2210543 | 2418819 | 175124 i< [ 150656 67713

IBM RT-PC/125 38928 34208 34753 37343 13901 | 11669 | 120334 44149
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TABLE XIII (Continued)

Groups 17,18: Intinsic Fi (integer and plex)
machine ABSI | MODI | MAXI EXPC LOGC SINC SQRC ABSC
CRAY Y-MP/832 76 563 127 6093 4478 5027 4282 1784
CRAY-2 51 545 202 9299 7827 9244 3761 1618
CRAY X-MP/432 58 1644 192 7913 5755 6553 5020 2309
IBM 3090/200 93 541 399 6948 5384 7081 6188 2302
MIPS/1000 169 2607 1415 21639 20454 25382 17361 6955
Sun 4/260 1027 3261 2957 87132 46483 123282 73181 38489
VAX 8600 1381 2546 2983 168775 145238 262011 87857 47671
VAX 3200 1498 3640 3816 266255 233369 438531 118507 62425
VAX-11/785 fort 563 | 11022 3367 156792 81107 88997 102146 54562
VAX-11/785 £77 2897 8970 8096 458645 491650 760555 199835 | 113818
VAX-11/780 4262 | 1€165 | 10719 || 1749767 | 1637191 | 2510877 626909 | 299780
Sun 37260 (f) 1665 3721 3825 178628 196966 231844 232360 26185
Sun 3/260 3186 6529 3414 (| 2722348 | 2339489 | 3656209 649596 | 168115
Sun 3/50 9953 | 15760 | 13886 || 5734016 | 5100953 | 7775319 | 1338978 | 364009
IBM RT-PC/125 2549 9232 8196 410201 233930 511218 380805 | 258205
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